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Abstract: In this paper, two types of steel frames, steel frame without side sway permission and another with 

side sway permission are created in Abaqus with 10 multiple slenderness ratio of the columns by changing the 

length every time starting from 1 M and ending with 10 M length of the columns, Twenty models of steel frames 

with single story and single bay were created, the models are with the same 2D dimensions  and material 

properties, the cross section of the steel is (0.5*0.5) M ,and  the supports are fixed, two equal forces P= 1000 N are 

exerted on the frames in the position mentioned in fig 6, a beam section was defined for the frame integrated 

before analysis  with Young modulus of elasticity E=1*10
7
  N/M

2 ,
  and  shear modulus G = 3.8*106 N/M2 and 

poisons ratio ν = 0.3. A linear perturbation step is created for buckling and 10 eigenvalues are requested for 

analysis, a standard quadratic beam element type is generated with global seeding of 0.6, and 20 Jobs are created 

for every situation and conclusions have been obtained, the critical buckling loads of the frames fall in the ranges 

between the Euler loads forms which has been proved for each type of frames and this scientific approach was 

verified in this research, in addition to that the relation between the length of the column and the eigenvalues that 

represent the critical loads of buckling verified, and the  simulations of the mode shapes of buckling of the steel 

frames were identified adopting finite element analysis which shows the amount of loads necessary to reach each 

mode shape of buckling for each type of steel frames mentioned before .                                                                                     
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I. Introduction 
  

 If a beam element is under a compressive load and its length if the orders of magnitude are larger than either of its other 

dimensions such a beam is called a column. Due to its size its axial displacement is going to be very small compared to 

its lateral deflection called buckling. Slender or thin‐walled components under compressive stress are susceptible to 

buckling and is called ―Euler buckling‖ where a long slender member subject to a compressive force moves lateral to the 

direction of that force, as illustrated in Figure 1. The force, F, necessary to cause such a buckling motion will vary by a 

factor of four depending only on how the two ends are restrained. Therefore, buckling studies are much more sensitive to 

the component restraints that in a normal stress analysis. The theoretical Euler solution will lead to infinite forces in very 

short columns, and that clearly exceeds the allowed material stress. Thus in practice, Euler column buckling can only be 

applied in certain regions and empirical transition equations are required for intermediate length columns. For very long 

columns the loss of stiffness occurs at stresses far below the material failure. 

 

 

 

 

 

 

 

 

 

Figure.1 Long columns fail due to instability 
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 Quite often the buckling of column can lead to sudden and dramatic failure. And as a result, special attention must be 

given to design of column so that they can safely support the loads. 

 

  Buckling can be related to the singularity of the tangent stiffness matrix, which in turn consists of two parts. The first 

part is the material stiffness matrix which is related to the deformational stiffness of the components, taking into account 

the connectivity of components in the current geometric configuration of the structure. For linear elastic components, the 

material stiffness is identical to the linear elastic stiffness, but updating the structural geometry to include the effect of 

any displacements. The second part is the geometric stiffness matrix, which is related to the component forces, and in 

some cases to the applied loading, taking into account the effect of a change in geometry from the current configuration. 

For typical structures, the material stiffness is positive for all deformation modes, mathematically referred to as positive-

definite, whereas the geometric stiffness can admit negative values for certain modes, depending on the component 

forces and applied loading. It is therefore the effect of a negative geometric stiffness that can lead to a singular overall 

tangent stiffness matrix, and hence buckling. 

 

II.  Stability concept 

 The question of the stability of various forms of equilibrium of a compressed bar can be investigated  by  using  the  

same  theory  as  used  in  investigating  the  stability  of equilibrium  configurations  of  rigid-body  systems  

(Timoshenko  and  Gere,  1963). Consider three cases of equilibrium of the ball shown in Figure.2. It can be concluded 

that the ball on the concave spherical surface (a) is in a state of stable equilibrium, while the ball on the horizontal plane 

(b) is in indifferent or neutral equilibrium. The ball on the convex spherical surface (c) is said to be in unstable 

equilibrium. 

 

 

 

 

 

 

 

 

 

Figure.2 Ball equilibrium cases 

 

 The compressed bar shown in Figure.3 can be similarly considered. In the state of stable equilibrium, if the column is 

given any small placement by some external influence, which is then removed, it will return back to the un-deflected 

shape. Here, the value  of  the  applied  load  P  is smaller  than  the  value  of  the  critical  load  Pcr.  By definition, the 

state of neutral equilibrium is the one at which the limit of elastic stability is reached. In this state, if the column is given 

any small displacement by some external influence, which is then removed, it will maintain that deflected shape. 

Otherwise, the column is in the state of unstable equilibrium. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure.3 Column equilibrium cases 
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III.  Euler Column 

 The Euler column is the axially loaded member shown in Figure.4 which is very idealized and is assumed to have a 

constant cross sectional area and to be made of homogeneous material. In addition, four assumptions are made: 

 

1. The ends of the member are simply supported. The lower end is attached to an immovable hinge, and the upper 

end is supported so that it can rotate freely and move vertically but not horizontally. 

2. The member is perfectly straight, and the load is applied along its Centroid axis. 

3. The material obeys Hooke's law. 

4. The deformations of the member are small enough so that the curvature term can be approximated to derive the 

Euler load P   which is the buckling load.    

 

 Due to imperfections no column is really straight. At some critical compressive load it will buckle. To determine the 

maximum compressive load (Buckling Load) we assume that buckling has occurred as shown in Figure.4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure.4 Buckling load 

Equating moments at the cut end: 

 

                               ΣM = 0 = Pv + M(x) = 0     ∴M(x) = −Pv 

 

 But since the deflection of a beam is related with its bending moment distribution, then: 

 

 

 

 

 which simplifies to   

 

 

where P/EI is a constant. This expression is in the form of a second order differential equation of the following type: 

 

 

 

 

Where:      

 

The solution of this equation is: 

 

v = A cos(αx) + B sin(αx) 

 

Where A and B are constants, which can be determined using the column’s kinematic boundary conditions. 

Kinematic Boundary Conditions 
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           at  x = 0, v = 0: 0 = A + 0, giving that A = 0 

 

at   x = L , v = 0, then: 0 = B sin(αL) 

 

 If B = 0, No bending moment exists, so the only logical solution is for: sin(αL)=0 and the only way that this can happen 

is if : 

 

                                        αL = nπ,       where n = integer 

 

 But since: 

 

 

 

Then we get that buckling load as: 

 

    

    …………… (1) 

 

 

The values of 'n' define the buckling mode shapes, as in Figure.5: 

 

 

 

 

 

 

 

 

 

 

 

 

Figure.5 Buckling modes  

 

 

 

 However, since P1 < P2 < P3, the column buckles at P1 and never gets to P2 or P3 unless bracing is placed at the points 

where v = 0 to prevent buckling at lower loads. The critical load for a pin ended column is therefore: 

 

 

    …………… (2) 

 

 

Which is also called Euler Buckling Load, 

 

PCrit  :   Critical or maximum axial load on the column just before it begins to buckle 

 

E          Young’s modulus of elasticity 

 

I           least second moment of area for the column’s cross sectional area 

 

L          unsupported length of the column, whose ends are pinned 
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IV.  Critical Buckling Load 

 Buckling is that mode of failure when the structure experiences sudden failure when subjected to compressive stress. 

When a slender structure is loaded in compression, for small loads it deforms with hardly any noticeable change in the 

geometry and load carrying capacity. 

 

 At the point of critical load value, the structure suddenly experiences a large deformation and may lose its ability to 

carry load. This stage is the buckling stage. 

 

 The critical buckling load for a pin-pinned column (which is called the Euler buckling load) is given by the formula:                                                                           

 

 

   n = 1,2,3  integer which is representing the mode of buckling for the simply supported columns.  

 Where n=1 for the lowest critical buckling load so the formula would be: 

 

 

 

 

 So the critical loads at which nonzero deflections are possible are the eigenvalues, and the deflected shapes that can 

exist at these loads are the eigenvectors. The smallest eigenvalue is the critical load and the corresponding eigenvector is 

the buckling mode shape. 

V.  Buckling of frames 

By considering a single story frame with a single bay, and for the buckling study we assume the external loads P to act 

directly over the columns so that there is no bending moment in any member of the frame prior to buckling, and the 

frame is categorized to two types: frames where side sway prevented and frames with side sway permitted. 

 We consider the first type of frames in which side sway is prevented. At the critical load the frame buckles as it 

mentioned in the figure. The buckling takes place when the applied load P is equal to the critical load of the columns, the 

upper end of each column is elastically restrained by the beam to which the column is rigidly connected, and that the 

critical load of the column therefore depends not only on the column stiffness, but also on the stiffness of the beam. We 

when we assume that the beam is infinitely flexible, the beam then is unable to offer any rotational restraint to the upper 

ends of the columns as shown in Figure.6.  

  In this case the columns behave as if they were fixed at one end and hinged at the other, and the critical load of the 

frame is approximately equal to twice the Euler load of the columns. 

 For an actual frame the critical load in which side sway is prevented, can be bracketed as follows:                   

                                                    2Pɛ < Pcr < 4Pɛ            ……………… (3) 

 

  When we consider the second types of frames in which side sway is permitted, and the base is fixed and it is assumed 

that the frame's material behaves according to Hooke's law, that the deformations remain small, and that there is no 

primary bending present in the frame prior to buckling, and the shear forces that arise from the bending of the horizontal 

member are neglected, and if we assume the beam to be infinitely flexible, the upper ends of the columns are free to both 

rotate and translate as shown in Figure.11. 

 In this case the columns act like to be fixed at the base and free at the top, and the critical load of the frame is equal to 

one fourth the Euler Load of the columns. 
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 The critical load of the frame whose upper joints are free to translate laterally must therefore lie between Pɛ and 1/4 Pɛ. 

That is: 

                                                   1/4 Pɛ < Pcr < Pɛ         ……………… (4) 

 

VI.  Buckling strength 

 

 Designs based on the alignment chart are reasonably accurate only when all the individual columns in a story buckle 

simultaneously under their individual proportionate share of the total gravity load. The columns cannot brace each other 

in this situation — their total strength is required to support their own gravity loads, leaving no reserve which might be 

counted upon to provide a bracing force for other columns. 

 

 There are situations in which the individual columns have excessive buckling strengths. If the two exterior columns 

contain axial loads such that the buckling load of these columns is not reached when the interior columns reach their 

independent buckling loads, the system will not buckle. This may occur when different loading conditions govern the 

design of various columns in a story. Shear resistance will be developed in the exterior columns which counteracts the 

side sway tendency. (If all columns want to buckle simultaneously, there will be no shear resistance available. the 

stabilizing effect of the lightly loaded exterior columns buckling will occur. The critical load for the interior columns is 

increased and their effective length is decreased. The stabilizing effect can be such that the effective length of some of 

the columns could be reduced to 1.0, even though there is no apparent bracing system. 

 

  It is safe to treat separately each column to which beams are rigidly attached and to use the alignment chart to get the 

individual strengths. However, in some instances this usual approach may be unduly conservative. Side sway buckling is 

a total story phenomenon. A single individual column cannot fail by side sway without all the columns in the same story 

also buckling in a sway mode. On the other hand, buckling in a non-sway mode is an individual phenomenon. Each 

column's non-sway buckling load is reasonably independent of the buckling load of the other columns. 

 

VII.  Buckling modes of frames 

A. Symmetric buckling: If the frame is prevented from translating laterally at the top, buckling will occur in the 

symmetric mode, as indicated in Figure.6 .The critical load for a fixed base portal frame whose beam has the same 

stiffness as the columns and that is laterally restrained is:  

……………… (5)              

  

 

 

 

 

 

 

 

Figure.6 Symmetric buckling 

 The mode shapes of buckling of the frame when side sway is prevented can be seen very apparent in the output of 

Abaqus jobs indicating the magnitude of critical load of buckling (eigenvalues) associated with each mode shape in the 

Figure.7-a till Figure.7-k 
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. 

 

 

 

Figure.7- a Un-deformed shape 

 

 

 

 

Figure.7- b Mode shape 1                                          Figure.7- c Mode shape 2 

 

 

 

 

Figure.7- d Mode shape 3                                            Figure.7- e Mode shape 4 

   

 

 

 

Figure.7- f Mode shape 5                                           Figure.7- g Mode shape 6 

 

 

 

 

Figure.7- h Mode shape 7                                                 Figure.7- i Mode shape 8 

 

 

 

 

Figue.7- j Mode shape 9                                    Figure.7- k Mode shape 10 
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Table -1 is the results of Euler loads and Critical buckling loads for 10 situations of column length for the frame with 

side sway prevented. 

Table – 1 Euler Loads and Critical Loads 

 

  Figure.8 represents the relation between the Euler Loads and the column lengths in the same time between the Critical 

Loads of Buckling and the column lengths when side sway is prevented in the frame due to the loads P.                                                                          

 

Figure.8 Euler Loads and Critical buckling loads  

  In Table-2, the eigenvalues of 10 mode shapes of buckling for 10 multiple column lengths of the frame are stated that 

are indications of the critical loads of buckling for each mode shape with respect of slenderness ratio.                                                                                                                                

Table – 2 Eigenvalues and mode shapes 

 

 

 

 

 

 

 

 

π2 E   N/M2 I   M4 L   M PE    N Pcr     N

9.877 10000000 0.0052 1 513604 1310400

9.877 10000000 0.0052 2 128401 327600

9.877 10000000 0.0052 3 57067.11111 145600

9.877 10000000 0.0052 4 32100.25 81900

9.877 10000000 0.0052 5 20544.16 52416

9.877 10000000 0.0052 6 14266.77778 36400

9.877 10000000 0.0052 7 10481.71429 26742.85714

9.877 10000000 0.0052 8 8025.0625 20475

9.877 10000000 0.0052 9 6340.790123 16177.77778

9.877 10000000 0.0052 10 5136.04 13104

0

200000

400000

600000

800000

1000000

1200000

1400000

0 2 4 6 8 10 12

Lo
ad

 N

Column length M

Euler Loads

Critical Loads

www.researchpublish.com
http://www.researchpublish.com/


                     International Journal Of Civil And Structural Engineering Research (IJCSER) 
Vol. 1, Issue 1, pp: (1-13), Month: October 2013-March 2014, Available at: www.researchpublish.com 

 

Page | 9  
Research Publish Journals 

  The eigenvalues of each mode shape associated with certain slenderness ratio of the frames with side sway prevented 

can be simulated in curves showing the relation between them which is in quadratic relation for the first 6 mode shapes 

and irregular relation for the last 4 mode shapes due to the negative values of the mode shapes for the critical loads, 

Figure.9 and Figure.10 represent that relation for the mode shape 1 and the mode shape 10 simultaneously.                                                                                               

.                                           

 

Figure.9 Eigenvalues of mode shape 1   

 

 

Figure.10 Eigenvalues of mode shape 10   

B. Side sway buckling:  If the frame is free to translate laterally at the top, it will buckle as indicated in Figure.11. 

The critical load for a fixed base portal frame whose beam has the same stiffness as the columns and that is laterally 

free to move is:                                                                                                       

  

                                                                                                                                         …………… (6) 
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Figure.11 Sidesway buckling 

  The mode shapes of buckling of the frame when side sway is permitted can be seen very apparent in the output of 

Abaqus jobs indicating the magnitude of critical load of buckling (eigenvalues) associated with each mode shape in the 

Figure.12-a till Figure.12-k.                        .                                                                                                 

 

 

 

 

Figure.12- a un-deformed shape 

                                                                   

 

 

 

        Figure.12- b Mode shape 1                                         Figure.12- c Mode shape 2      

 

 

 

 

Figure.12- d Mode shape 3                                      Figure.12- e Mode shape 4 

 

 

 

 

Figure.12- f Mode shape 5                                  Figure.12- g Mode shape 6  
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Figure.12- h Mode shape 7                                 Figure.12- i Mode shape 8 

 

  

 

 

Figure.12- j Mode shape 9                            Figure.12- k Mode shape 10 

  Table-3 is the results of Euler loads and Critical buckling loads for 10 situations of column length for the frame with 

side sway permission.                                       .                        

Table – 3 Euler Loads and Critical Loads  

  

 Figure.13 represents the relation between the Euler Loads and the column lengths in the same time between the Critical 

Loads of Buckling and the column lengths when side sway is permitted in the frame due to the loads P.                                                                           

 

 Figure.13 Euler Loads and Critical buckling loads 

π2 E I L PE Pcr

9.877 10000000 0.0052 1 513604.00 381680

9.877 10000000 0.0052 2 128401.00 95420

9.877 10000000 0.0052 3 57067.11 42408.88889

9.877 10000000 0.0052 4 32100.25 23855

9.877 10000000 0.0052 5 20544.16 15267.2

9.877 10000000 0.0052 6 14266.78 10602.22222

9.877 10000000 0.0052 7 10481.71 7789.387755

9.877 10000000 0.0052 8 8025.06 5963.75

9.877 10000000 0.0052 9 6340.79 4712.098765

9.877 10000000 0.0052 10 5136.04 3816.8
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  In Table-4, the eigenvalues of 10 mode shapes of buckling for 10 multiple column lengths of the frame are stated that 

are indications of the critical loads of buckling for each mode shape with respect of slenderness ratio.                                                                          

Table – 4 Eigenvalues and mode shapes 

 

  The eigenvalues of each mode shape associated with certain slenderness ratio of the frames with side sway permitted 

can be simulated in curves showing the relation between them which is in quadratic relation for the first 7 mode shapes 

and irregular relation for the last 3 mode shapes due to the negative values of the mode shapes for the critical loads, 

Figure.14 and Figure.15 represent that relation for the mode shape 1 and the mode shape 10 simultaneously.                                                                                 

 

Figure.14 Eigenvalues of mode shape 1   

 

Figure.15 Eigenvalues of mode shape 10   
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VIII.  Conclusions and recommendations 

 In this paper the results of the buckling analysis drawn from Abaqus jobs for the steel frames with side sway prevented 

and the others permitted associate with 10 multiple configuration of slenderness ratio of the columns are shown below:                               

1- The basic results of buckling analysis are critical coefficients (eigenvalues) and buckling mode shapes 

(eigenvectors) corresponding to these critical coefficients.  Each critical coefficient is the factor by which the loads 

of appropriate load case should be multiplied to obtain appropriate loss of stability which is the buckling mode 

shape. 

2- Negative critical coefficient (eigenvalues) for some buckling mode means that the loads of appropriate load case 

should have opposite direction to result in such buckling mode shape. In practice buckling mode shapes with 

negative critical coefficients (eigenvalues) should be neglected. 

3- The theoretical values of buckling critical loads for each frame type are approximately the same value of drawn 

values of the critical loads obtained from buckling analysis of Abaqus jobs that are equal to multiplying the 

magnitude of the P applied on the frame by the eigenvalue of each buckling mode shape, and the deference between 

the two values could be narrowed by making mesh refinement in each seeding step in Abaqus jobs until reaching the 

designated theoretical value.  

4- Changing the slenderness ratio of the columns to higher values by shortening the columns length every time , leads 

to higher values of eigenvalues for each  buckling mode shape and as a result to get higher values of  critical loads 

needed to create buckling in each type of frames especially in the steel frames that are prevented from side sway 

buckling.    

      

 I recommend the following points for the future works in this area which have been arisen during my research work and 

need more details and analysis: 

 

1- Studying steel frames with more than one story and one bay to search the results and compare them to relevant 

results. 

2-  Mesh refinement of the models to investigate the efficiency of the results and control the output of the parameters 

of buckling analysis. 

3- Creating steel frames models in 3D forms, and application of the same analysis steps, and drawing conclusions 

about the effects of this change on the analysis. 
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